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Figure 1: Left. Spectral renderings of the same scene under four standard illuminants. This scene contains RGB textures which
have been authored for spectral uplifting with our method. Top-right. Metameric mismatching between two objects, which
are constrained to remain identical under D65 and A illuminants. Middle-right. Metamerism on a surface with exaggerated
reflectances constrained to the theoretical boundaries of a metamer mismatch volume, such that a message becomes visible
only under the FL11 illuminant. Bottom-right. A more realistic example of generated spectral reflectances using our method.

ABSTRACT
Spectral rendering is a crucial solution for photorealistic rendering.
However, most available texture assets are RGB-only, and access to
spectral content is limited. Uplifting methods that recover full spec-
tral representations from RGB inputs have therefore received much
attention. Yet, most methods are deterministic, while, in reality,
there is no one-to-one mapping. As a consequence, the appearance
of uplifted textures is fully determined under all illuminants. Hereby,
metamers, which are materials with differing spectral responses
that appear identical under a specific illumination, are excluded.

We propose a method which makes this uplifting process control-
lable. Hereby, a user can define texture appearance under various
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lighting conditions, leading to a greatly increased flexibility for con-
tent design. Ourmethod determines the space of possible metameric
manipulations and enables interactive adjustments, while main-
taining a set of user-specified appearance constraints. To achieve
this goal, we formulate the problem as a constrained optimization,
building upon an interpolation scheme and data-based reflectance
generation, which maintain plausibility. Besides its value for artistic
control, our solution is lightweight and can be executed on the fly,
which keeps its memory consumption low and makes it easy to
integrate into existing frameworks.
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1 INTRODUCTION
Physically-based rendering systems are able to generate increas-
ingly photorealistic imagery. While early approaches encoded phys-
ical properties such as light and reflectance as RGB colors, spec-
tral rendering has become an important component for realism.
A trichromatic approximation, as RGB, cannot accurately predict
realistic color phenomena under complex light sources [Borges
1991]. Spectral rendering, albeit at increased computational costs,
addresses this shortcoming by performing light-transport for vari-
ous wavelengths. It enables accurate color reproduction and support
for phenomena such as chromatic dispersion and fluorescence.

For spectral rendering, scene assets need spectral material prop-
erties, e.g., reflectance. This is a challenge, as spectral material
capture is laborious, difficult, and the related memory consump-
tion can be significant. Further, content-authoring pipelines tend
to target RGB color spaces and no solution allows an artist to easily
interact with spectral definitions. Instead, a large body of work
exists that seeks to sidestep these issues by uplifting RGB colors to
full spectra. This is an inherently ill-posed problem, as a color can
stem from an infinite number of metameric spectra. Typically, solu-
tions opt for smooth and bounded shapes seen in many reflectances,
often establishing a 1-to-1 mapping between RGB and resulting
spectra. Such a conversion is restrictive, as it does not allow users to
achieve metameric behavior. Further, color constancy is an issue; an
uplifted material produces well-specified colors only under a single
illuminant. In consequence, an artist may have to tweak materials
to produce expected results under different illuminants.

We propose to make spectral uplifting controllable, such that a
user can define simultaneous material appearances under different
illuminants, hereby supporting metameric behavior. For a single
input texture, we derive a simple polytope, forming a convex hull
around the original RGB texture data in an R3 space. For each
vertex of this convex hull, a smooth and bounded reflectance is
generated, respecting user-provided color constraints that define
how the reflectance stored in each vertex should appear under dif-
ferent illuminants. We then use generalized barycentric coordinates
to transfer the spectra from the vertices of the convex hull to the
enclosed RGB texture data. By employing prior work on metamer
mismatch volume estimation [Mackiewicz et al. 2019], we can fur-
ther ensure that user-provided color constraints are restricted to
possible solutions, ensuring a minimal roundtrip error.

As the uplifting builds upon an interpolation scheme, our so-
lution provides a simple, compressed format for spectral textures,
leading to a practical representation for spectral-rendering contexts.
For this reason, we have made our toolkit, which we callMetameric,
as well as a Mitsuba 3 [Jakob et al. 2022] plugin, openly available1.

Specifically, we make the following contributions:
• An efficient uplifting technique supporting color-constancy;
• A solution for constrained artistic control;
• A compact representation for spectral textures.

1https://graphics.tudelft.nl/Publications-new/2023/VE23/

In the following, we cover the relevant background (Sec. 2),
before presenting our method (Sec. 3) and results (Sec. 4). Finally,
we discuss our findings (Sec. 5) and conclude (Sec. 6).

2 BACKGROUND
Color theory. Color as a phenomenon is determined by the sig-

nals of a set of observing sensors, which respond differently to the
spectral distribution of incident light [Wyszecki and Stiles 1982].
Such sensors are described by observer functions. Given an illu-
minant’s spectral power distribution (SPD) 𝑒 (𝜆) (equal energy E
or D65 daylight illuminant are often-chosen whitepoints), we can
express the response to a spectral surface reflectance 𝑟 (𝜆) as

Φ(𝑟 ) =
∫
Λ
𝜙 (𝜆) 𝑒 (𝜆) 𝑟 (𝜆) 𝑑𝜆, (1)

where 𝜙 (𝜆) is a drop-in for the set of observer functions, and Λ the
range of light (often the visible spectrum). This is formalized by
the International Commision on Illumination (CIE) in the CIE XYZ
color space with a trio of standard observer functions 𝑥,𝑦 and 𝑧. A
variety of color spaces is defined as linear transformations of CIE
XYZ, such as sRGB, which is prevalent in computer graphics.

The mapping Φ in Equation 1 describes a linear transformation
from an essentially infinite-dimensional spectral space X to a (usu-
ally) three-dimensional color space. We call this combination of
observer functions and illuminants a color system. The set of possi-
ble responses {𝑟 ∈ X | Φ(𝑟 ) ≠ 0} in any given color system forms
a convex region, referred to as its object color solid (OCS).

Metamerism. Webriefly summarize Finlayson andMorovic [2005]
and Logvinenko et al. [2013], who extensively discuss metamerism
and related concepts. Given a known color system and signal, up-
lifting means inverting Equation 1 by finding a reflectance s.t.

Φ−1 (Φ(𝑟 )) = 𝑟 . (2)

This is an ill-posed problem due to the underdetermined nature
of the linear system in Equation 1. Thus, there is a convex set of
reflectances, being metameric with respect to this color system, i.e.,

Φ−1 (Φ(𝑟 )) = {𝑟 ′ ∈ X | Φ(𝑟 ) = Φ(𝑟 ′)}. (3)

All spectra in the above metamer set are solutions to Equation 2.
A secondary color system Ψ with differing observer or illuminant,
applied to the reflectances in this metamer set, might have its sig-
nal responses differ. This is called respectively observer-induced
and illuminant-induced mismatching. Formally, if the metamer set
Φ−1 (Φ(𝑟 )) is mapped to Ψ, this results in a non-singleton OCS
called a metamer mismatch region. This region represents the full
range of colors that may be observed after a color-system change.

Much work focuses on estimating OCS boundaries. Given its
novelty, we highlight the work of Logvinenko et al. [2013]. It uses
a linear mapping Γ : X → 𝑅6 s.t. Γ(𝑟 ) = (𝑧, 𝑧′), where 𝑧 = Φ(𝑟 )
and 𝑧′ = Ψ(𝑟 ) form the corresponding color signals over the set of
Equation 3. The authors show that, for a given 𝑧, the set of signals
in a metamer mismatch volume is a cross-section of Γ:

M(𝑧,Φ,Ψ) = {𝑧′ ∈ 𝑅3 | (𝑧, 𝑧′) ∈ Γ}. (4)

While points inside the mismatch volume are formed by different
metamers, boundary points reduce to a single optimal spectrum.

https://doi.org/10.1145/3588432.3591565
https://graphics.tudelft.nl/Publications-new/2023/VE23/
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Figure 2: Reflectances (left) from a BabelColor Average
dataset [Barber et al. 1996], and CIE standard illuminants
(right). Note how reflectances are generally low-banded,
while illuminants express a variety of shapes.

A notable property of optimal spectra is that they are elemen-
tary step-functions, consisting only of transitions between zeroes
and ones. Knowledge on optimal spectra has expanded over the
years [Logvinenko 2009; Schrödinger 1920; West and Brill 1983].
In our work, we apply the method of Mackiewicz et al. [2019]
to find optimal spectra on mismatch volume boundaries, leading
to a conservative approximate convex hull around M. This ap-
proach establishes maximal theoretical boundaries to metameric
mismatching. Empirically-established boundaries seem substan-
tially smaller [Zhang et al. 2016], when ignoring structural colors.

Spectral distributions. We briefly expand on properties of natural
spectra. Illuminants typically describe a quantity of energy per
wavelength, while reflectances describe a surface’s effectiveness in
reflecting said energy. Illuminants are positively unbounded and
express a variety of shapes dependent on the involved physical
processes. In contrast, reflectances are bounded to (0, 1), being
energy-conserving. Fluorescents break this constraint, but should
not be encoded as one-parameter functions. Further, reflectances
are typically band-limited in the visible spectrum. This is considered
a property of natural pigments, but not structural colors [Maloney
1986]. In this work, and most related work, we restrict ourselves to
handling smooth reflectances. We depict several spectra in Fig. 2.

Spectral uplifting. While we briefly cover prior methods, we refer
the reader to [Weidlich et al. 2021] for a broader categorization.

An early method for spectral uplifting, which nowadays has
mostly theoretical implications, was proposed by MacAdam [1935].
The more recent and long-time standard method of Smits [1999]
describes uplifting as an optimization problem, generating com-
binations of seven precomputed primary spectra. While this ap-
proach is fast, the resulting reflectances can break boundedness
constraints. More recently, Meng et al. [2015] precompute sets of
spectra on a grid spanning the xy chromaticity plane, recovering in-
termediates through interpolation. Their method produces smooth
reflectances, but introduces round-trip errors for saturated colors.
Otsu et al. [2018] improve on this approach by clustering measured
spectra into a KD-tree over the xy plane. Inside each cluster, the
authors interpolate weights applied to PCA-derived basis functions.
While the resulting reflectances are inherently smooth, discontinu-
ities arise at cluster boundaries, as different bases are used. Finally,
Mallet and Yuksel [2019] describe convex combinations of three
bases on sRGB gamut vertices, enabling reconstruction of input data

(b) Vertex reflectance generation

(a) Convex hull generation RGB Texture input

Metamer mismatching constraints

Spectral texture output(c) Convex reflectance combination

Figure 3: Method overview. As a preprocess, we generate a
low-complexity convex hull around RGB inputs. For hull ver-
tices, we generate reflectances satisfying artist-configurable
color constraints. During rendering, we recover texture re-
flectances as convex combinations of vertex reflectances.

with little roundtrip error. However, due to the saturated shapes
of their basis, uplifted spectra become arguably blocky. Further,
their approach is restricted to uplifting of in-gamut sRGB data. Our
method extends this concept, while avoiding such problems.

In their work, Jakob and Hanika [2019] use a low-dimensional
parameterization of a sigmoidal function space. They precompute
function coefficients inside a three-dimensional color lookup table.
Function reconstruction from interpolated coefficients is inher-
ently fast, and produces smooth reflectances with low round-trip
error. Several extensions cover out-of-gamut spectra such as fluo-
rescents [Jung et al. 2019; König et al. 2020]. A similar, Fourier-space
based approach is demonstrated by Peters et al. [2019], address-
ing certain round-trip issues of the sigmoidal. Tódóva et al. [2021;
2022] expand on this method, to our knowledge being the first to
introduce constrained spectral uplifting. They enable seeding of the
method’s coefficient generation, such that certain acquired spectra
are reproduced accurately. Coefficient generation is costly, how-
ever, and their complex encoding of seeded constraints introduces
overhead during rendering. Our approaches differ fundamentally.
We generate reflectances from user-provided color constraints, im-
plying we recover color-matched spectra, not reproductions. While
enforcing color-constancy, this enables authoring of metamers for
which spectral acquisition is difficult. Combined with our toolkit’s
interactive performance, this allows artistic expression in uplifting.

3 METHODOLOGY
Here, we present our constrained spectral uplifting, illustrated in
Fig. 3. The core of our solution comprises three elements. First,
we generate a low-complexity convex hull in R3 around the texel
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colors of an RGB texture, and recover generalized barycentric coor-
dinates to represent these texel colors as convex combinations of
the hull’s vertices. Second, we generate a small number of metamers
with minimal round-trip error for the vertices of this convex hull,
fulfilling artist-provided constraints that indicate the appearance
of the vertex reflectances in different color systems. Third, dur-
ing rendering, we spectrally uplift the input texture as a convex
combination of the vertex metamers.

We first cover our method’s foundation (Sec. 3.1), followed by
convex-hull construction (Sec. 3.2). We then describe solving for
vertex reflectances and texture uplifting (Sec. 3.3). Afterwards, we
analyze user-guided uplifting and explain how to steer it via a set
of RGB textures with known color systems (Sec. 3.4). We reserve
implementation details for Sec. 4.

3.1 Foundation
As a color system describes a linear transformation (Equation 1), for
any given color signal within that color system, there exists a set
of metameric reflectances. Let 𝑛 color signals Φ(𝑟1), . . . ,Φ(𝑟𝑛) with
corresponding reflectances 𝑟1, . . . , 𝑟𝑛 . We can then define a convex
combination of these color signals using scalar weights 𝑎1, . . . , 𝑎𝑛 ,
satisfying ∀𝑖 𝑎𝑖 ≥ 0 and

∑
𝑎𝑖 = 1. Due to linearity:∑︁

Φ(𝑟𝑖 )𝑎𝑖 = Φ
(∑︁

𝑟𝑖𝑎𝑖

)
. (5)

In consequence, we see a direct relationship between linearly com-
bined reflectances and linearly combined color signals. For example,
the mean of two metamers is itself a metamer. This principle holds
for arbitrary reflectances (Fig. 4), and is used in most prior work.

Meng et al [2015] apply this observation to interpolate spectra
mapped to the xy chromaticity plane. Yet, a colorspace is trichro-
matic (R3). Any interpolation between three points leads to a trian-
gle, while points outside the triangle’s plane cannot be interpolated.
Therefore, mapping multiple color signals to a plane is inherently
problematic. Instead, we generate a convex hull with 𝑛 vertices
around the input colors in an R3 space such as CIE XYZ. This hull
is minimally a 3-simplex (tetrahedron), though added vertices pro-
vide benefits such as a finer-grained control over uplifting. As all
input colors of the texture to be uplifted lie within the hull, we can
describe these colors as convex combinations of the hull’s vertices,
with scalar weights 𝑎1, . . . 𝑎𝑛 (∀𝑖𝑎𝑖 ≥ 0,

∑
𝑎𝑖 = 1). As each vertex

position is a color signal, we can find a suitable reflectance for each
vertex from the signal’s metamer set. Following Equation 5, we
then recover valid reflectances for each input color, by computing
the convex combination for these vertex reflectances.

3.2 Convex hull
In theory, the advantage of interpolating reflectances from the
convex hull is that if vertex reflectances are bounded to [0, 1], so
will a resulting convex combination. Yet, the convex hull should not
jut out of the color space, as, otherwise, natural reflectances cannot
be reliably found for these vertices; they would not map to any color
signal in the color system. This situation is common when only
relying on a tetrahedron. For example, consider an RGB texture
covering most of the gamut, and its R3 representation (Fig. 5). An
enclosing tetrahedron’s vertices would lie outside the color-system
boundaries. We avoid this issue using a general polygonal hull.

Spectrum

CIE XYZ

Weight

Figure 4: Following Equation 5, we show colors obtained from
linearly mixing two reflectances, and corresponding results
obtained from mixing their respective colors instead.
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Figure 5: R3 mappings of texture data in linearized sRGB.

For a general polygonal hull, we can determine suitable weights
to enable convex combinations. We rely onMean Value Coordinates
(MVCs) [Floater 2003], using the method of Ju et al. [2005] to adapt
MVCs for triangle meshes. MVCs are in [0, 1], sum to one, and
are continuous within a hull’s interior. The latter property ensures
that recovered reflectances do not impress sudden discontinuities
between upliftings, which is a problem Otsu et al. [2018] encounter.

Hull generation. Tan et al. [2018; 2016] show in their image seg-
mentation work, that four to ten vertex structures encompass most
input images, implying that a coarse hull typically suffices. We
similarly generate an enclosing mesh around input colors using the
Quickhull algorithm [Barber et al. 1996] and subsequently perform a
progressive mesh simplification [Hoppe 1996] using repeated edge
contractions. To generate a simplified convex hull, we should place
a vertex resulting from a contraction strictly outside the existing
hull. Sander et al. [2000] formulate such an optimization by ensur-
ing that each new vertex strictly adds volume to a mesh. They then
perform the contractions in an order that greedily minimizes this
added volume. This approach might move contracted vertices out-
side the color system’s gamut, in which case Tan et al. [2018; 2016]
encounter reconstruction errors. To ensure valid vertex placement,
we establish boundary constraints as follows.

First, we determine the region of possible color signals that a
color system can produce, which is a convex hull; the OCS (Sec. 2).
For example, a green illuminant will not allow any reflectance to
produce a red color.We find this OCS hull using the recent sampling-
based approach of Mackiewicz et al. [2019]. We then restrict vertex
contractions to the hull’s interior as otherwise, at a later stage,
we cannot find reflectances for vertices outside the color system.
Whenever a potential contraction falls outside the hull, the vertex
is projected to the hull’s surface. If this reprojection results in a
contraction with negative volume, it is discarded and another is
selected. Contractions are then repeated until the intended number
of vertices is reached, or no further contractions can be performed
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71 vertices (input hull)Input texture 16 vertices 8 vertices

Figure 6: Progressive mesh simplification [Barber et al. 1996]
of a convex hull, following the work of Tan et al. [2018; 2016],
fitted around texture data (left). This results in simpler struc-
tures, but through volume-preserving constraints remains
convex. Contracted vertices are bounded to a object color solid,
the convex region of possible responses in a color system.

without breaking the above constraints. We show a convex hull
generated by repeated progressive mesh simplification in Fig. 6.

3.3 Reflectance generation
Given the convex hull, we next generate reflectances for its vertices.

As in prior work, instead of working with spectra directly, we
use weighted sums of basis functions obtained through PCA, which
is an established representation for low-banded spectra based on
measured data [Cohen 1964; Fairman and Brill 2004; Otsu et al.
2018; Parkkinen et al. 1989; Tzeng and Berns 2005]. We build our
basis using a dataset of ∼ 41𝑀 reflectances [Zhang et al. 2016],
which gathers earlier works [Foster et al. 2006; Le Moan et al. 2015;
Li et al. 2014; Yasuma et al. 2010] representing a variety of natural
and synthetic materials such as sediment, wood, plant-life, skin,
food, paints, plastics, and textiles. Reflectances are measured over
the 400 − 700 nm spectral range at 10 nm intervals.

PCA reduces the dimensionality of a space. This leads to smooth
reflectances, given a low number of basis functions; prior work has
established that three functions are minimally required for most
reflectances [Cohen 1964]. In short, we represent input reflectances
as discretized, 𝑘−dimensional vectors 𝑟 , resampling inputs if nec-
essary. We then acquire 𝑚 basis functions (𝑚 ≤ 𝑘) using PCA,
encoding the first𝑚 principal component eigenvectors in a 𝑘 ×𝑚

matrix 𝐵. Contrary to prior work, we retain𝑚 > 3 functions, ensur-
ing that a single color system does not fully determine the resulting
reflectance, leaving room for metameric mismatching.

We next formulate a discretization of Equation 1: Φ(𝑟 ) = Φ𝐵𝑤 ,
where𝑤 is an unknown𝑚−dimensional weight vector and Φ(𝑟 ) is
a known color signal. The corresponding color system Φ is encoded
as a 3 × 𝑘 matrix of observer functions, multiplied with a measured
illuminant. Solving for𝑤 then allows us to recover reflectances as
𝑟 = 𝐵𝑤 , which we store explicitly as a 𝑘−dimensional vector in
the corresponding hull vertex. We solve via a linear-programming
optimization [Dantzig 1982]. Hereby, we can enforce the solution’s
boundedness using additional constraints, i.e., 0 ≤ 𝐵𝑤 ≤ 1.

With a single color-system constraint (e.g, colors under D65), we
can always find a reflectance (Equation 3). However, the system is
underconstrained, thus, we can attempt to satisfy 𝑐 secondary con-
straints Ψ1 (𝑟 ), . . . ,Ψ𝑐 (𝑟 ) under different color systems Ψ1, . . . ,Ψ𝑐
simultaneously. In other words, for each vertex, we can specify its
color signals in different color systems (e.g., colors under D65 and

FL11). The metamer set, with respect to all constraints, is then:

Φ−1 (Φ(𝑟 )) = {𝑟 ′ ∈ X | Φ(𝑟 ) = Φ(𝑟 ′) ∧ ∀𝑖Ψ𝑖 (𝑟 ) = Ψ𝑖 (𝑟 ′)}. (6)

Involving all constraints, a solution 𝑤 implies the existence of
a reflectance 𝑟 = 𝐵𝑤 , which lies in the intersection of all color
signals’ respective metamer sets. The opposite also holds; no shared
metamer exists if the sets’ intersection is empty.

Determining high-dimensional metamer set boundaries is ex-
pensive, unless restrictions are imposed [Finlayson and Morovic
2005]. However, we can establish boundaries on mismatching be-
tween color signals in different color systems. To determine the
region of valid weights𝑤 , we hence restrict the space of solutions
by establishing input constraints in R3, one constraint at a a time.
In each step, we produce a metamer mismatch volume (Equation 4),
s.t. prior constraints are satisfied. We employ the method of Mack-
iewicz et al. [2019] to find this volume, clipping the constraint space
as before. The order of constraints does not matter, as the resulting
set of solutions lies within the insersection of all metamer sets.

Optimization then leads to a valid weight𝑤 among all possible
solutions in the remaining set. We optimize for the smallest norm.
If a metamer mismatch volume collapses to a point, a single weight
forms the optimal solution. Upon finding𝑤 , we convert back to a
spectrum (𝑟 = 𝐵𝑤 ) and store the result in the corresponding hull
vertex. We store this spectrum and not the weight, as the number of
vertices is low, and we avoid this multiplication during rendering.
This further allows using an acquired reflectance, should this be
available for the vertex.

Texture reconstruction. Once vertex reflectances are determined,
uplifting of the input texture’s color signals is straightforward by
invoking the corresponding convex weights and Equation 5.

Indeed, uplifting a pixel 𝑝 boils down to a matrix multiplica-
tion between MVC weights and vertex reflectances - for a single
wavelength, only an inner product is needed. Specifically, given the
MVC vector of pixel 𝑝 ;𝐴(𝑝) := (𝛼1, · · · , 𝛼𝑛), and vertex reflectances
𝑅1, · · ·𝑅𝑛 , the uplifted spectrum is equal to 𝐴(𝑝) (𝑅1, · · · , 𝑅𝑛).

3.4 User interaction
To enable constrained control, our toolkit provides an interface
(Fig. 7). To begin uplifting, a user provides an input texture and pri-
mary color system (e.g. CIE XYZ andD65). As our method can uplift
without secondary constraints, we immediately show reflectances
and spectral renders of the input texture for different color systems.
The interface then focuses on the convex hull in R3. Users can
modify the hull to suit their needs, or add constraints to vertices.

As the user selects a vertex, a weight map illustrates how texels
are affected by changes to this vertex. Next, the user can add a color
system (e.g., FL11), and the interface shows a mismatch volume
for the vertex in this system. The volume’s interior describes all
color signals that can be produced under FL11, while maintaining
appearance in D65. The user can freely modify the vertex color in
this second system, and a reflectance is generated fulfilling both
constraints (D65 and FL11). As the volume is color-coded, a user can
intuit how a secondary constraint affects appearance of affected tex-
els under FL11. Once satisfied, the user can add further constraints
on other vertices, or via additional color systems.
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The interface is interactive and provides direct visual feedback.
We show an example session in the supplementary video.

Image seeding. Direct vertex manipulation gives full control and
allows precise definitions. An additional option is to define con-
straints indirectly by providing measured images, which can be
acquired or authored. The user then provides a color system per
input image. The first image and color system (e.g., D65) is used as a
reference. As input constraints can fall outside of the metamer mis-
matching boundaries of convex hull vertices, we cannot guarantee
that a solution exist s.t. the input is reproduced without roundtrip
error. In consequence, we minimize this error while preserving the
primary input image. We proceed as follows.

We sample a random subset of texels from the primary image,
and obtain secondary color signals at these texels from the sec-
ondary images. For each sample, we test whether a solution exists
by attempting to recover a suitable reflectance, as authored textures
may violate constraint boundaries, and otherwise sample again.
We now have a set of texels with valid color constraints, and con-
nect these to the convex hull using the previously computed MVCs.
We next solve for vertex reflectances whose convex combinations
satisfy the constraints at each sampled texel. This can again be spec-
ified as a linear programming optimization, in which basis function
weights are found from which we can derive vertex reflectances.

If no solution exists, we reduce or relax the set of texel con-
straints. Hereby, we increase the space of possible solutions, but
incur roundtrip error in secondary color systems. As the convex
hull is unaffected, the primary will always be perfectly reproduced.

4 RESULTS
First, we evaluate accuracy, discuss implementation details, and es-
tablish used parameters. We then evaluate our method’s per-vertex
reflectance recovery (Sec. 4.1), followed by full-texture upliftings
(Sec. 4.2). Finally, we detail rendering performance (Sec. 4.3).

Implementation. We implement most components as a prepro-
cess in our uplifting toolkit. We operate on CIE XYZ values inter-
nally, enabling device-independent operations. We rely on Open-
Mesh [Bischoff et al. 2002] for mesh simplification, and the COIN-OR
CLP solver [Forrest et al. 2022] for linear-programming. We offload
most work to OpenGL; MVC computation and rendering of uplifted
textures are examples, though we note that MVCs are sensitive
to numerical precision due to imprecise trigonometric functions.
Finally, our user interface leverages Dear ImGui [Cornut 2022].

We define a straightforward exportable texture format consist-
ing of two data blocks; vertex reflectances and MVCs. Disk storage
is compressed using zlib [Deutsch and Gailly 1996]. We further
implement a texture plugin for Mitsuba 3 [Jakob et al. 2022]. Up-
lifting is implemented as four inner products, vectorized over four
wavelengths. MVCs are shared across vector units, while vertex
data is sampled per unit. We show example renders in Mitsuba,
using authored spectral materials (Fig. 12).

Setup. We set a 400 − 700 nm spectral range for all methods, and
describe discrete spectra using𝑘 = 64 bins to handle high-frequency
illuminants, resampling PCA inputs where necessary. Our choice of
spectral range is motivated by our basis; our toolkit supports bases
using a wider range such as the customary 360 − 380 nm. Across

tests, we use 𝑛 = 8 convex hull vertices; note that our method uses
higher numbers if a hull cannot be simplified further.

While prior work employs𝑚 = 3 basis functions, Mackievicz et
al. [2019] show that metamer mismatching boundaries are reduced
by any linear model. The choice of𝑚 thus pivots on two factors;
low values generate low-banded reflectances, while high values
enable metameric mismatching. We generate mismatch volumes
and interior metamer sets for𝑚 = 6, 8, . . . , 16 (Fig. 8) but use𝑚 = 12
for further tests. As shown, mismatch boundaries are conservative
approximations dependent on𝑚. However, we do not consider this
a problem, as Zhang et al. [2016] show that empirically measured
mismatch volumes are smaller than the theoretical maximum.

4.1 Single-reflectance recovery
We sample reflectances from a BabelColor Average dataset [Barber
et al. 1996], and measure color signals for standard illuminants D65,
A, E, FL2, FL11, and LED-RGB1. We uplift for D65 using the methods
of Smits [1999], Meng et al. [2015], Otsu et al. [2018], and Jakob
and Hanika [2019]. We then apply our method without and with
𝑐 = 1, 2, 3 secondary constraints, for FL2, FL11 and LED-RGB1.

Fig. 9 shows roundtrip colors and CIE LAB Δ𝐸00 color differ-
ence for each method (Δ𝐸00 ≤ 1 implies no perceptible difference;
Δ𝐸00 ≤ 2 implies minimal mismatching). With the exception of
Smits [1999], all methods correctly recover for D65. Further, all
methods except Otsu et al. [2018] display metameric mismatching
for FL11; our method without additional color constraints is no
exception here (Δ𝐸00 = 7.85). With constraints, results improves
significantly; we measure Δ𝐸00 ≤ 0.72 (𝑐 = 2) and Δ𝐸00 ≤ 0.14
(𝑐 = 3), far below the perceptible limits for all illuminants.

4.2 Multiple-reflectance recovery
We demonstrate manual texture authoring in Fig. 10. We establish a
baseline forD65 using the sigmoidal [Jakob and Hanika 2019]. With-
out further constraints, our method produces smooth metamers
to the baseline. We then show two mismatched upliftings under
FL11, illustrating the variety our method enables (note the Δ𝐸00
measures). We further show that a user can generate color-constant
upliftings for FL11, while mismatching for D65.

We next test recovery of hyperspectral data, sampling textures
from the HyTexila dataset [Khan et al. 2018] in Leaf, Textile, Stone
andWood categories. Each 10242 texture stores 186 spectral chan-
nels (400 − 1000 nm). We acquire color textures under the illu-
minants used in Sec. 4.1, and perform renders for D65 using the
sigmoidal [Jakob and Hanika 2019]. We seed our method with color
images under FL2, FL11, and LED-RGB1. While we expect to avoid
metameric failure, roundtrip error is likely for secondary color
systems, as constraints are relaxed to preserve the convex hull.

Fig. 11 shows roundtrip error and recovered reflectances. Both
methods correctly handle D65, but show mismatching in some
situations. Our method’s constraint fitting varies in quality between
images; Leaf /Wood textures are recovered without perceptible error,
while Textile/Stone uplifts show mismatching under FL11, as our
method fails to correctly fit a number of outlier texels (e.g. Textile;
Δ𝐸00 ≤ 4.56, 𝜇 = 0.95). The sigmoidal, in comparison, reconstructs
the smooth reflectances ofWood/Stone textures, but produces visible
metameric failure for Leaf /Textile.
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Sigmoid n = 4 n = 8 n = 16 Ground

Runtime (s) 31.35 32.83 34.18 35.10 36.40
Memory (MB) 16.0 16.0 32.0 64.0 792.0

Table 1: Runtime and texture memory usage during render-
ing; our method with 𝑛 = 4, 8, 16 vertices, Jakob and Hanika’s
method [2019], and a hyperspectral ground with 186 spectral
bins. Run on Ryzen 9 5950X, 32GB DDR4, NVIDIA RTX 3070.

4.3 Memory and runtime
We compare memory and runtime of the methods used in Sec. 4.2.
We render a 10242 px image at 256 𝑠𝑝𝑝. (averaging ten renders), s.t.
a screen-filling render of theWood texture is generated. All meth-
ods use single-precision, though we speculate that half-precision
suffices for parts of each method. For our method, we measure for
𝑛 = {4, 8, 16} vertices. All choices gave a valid convex hull.

Table 1 lists results for each method. Results are as expected;
the sigmoidal shares texture reads across four wavelengths, and is
practically as fast as trichromatic rendering. Our method requires
five texture reads per four wavelengths (one for MVCs, four for
wavelength reflectances), whose size depends on vertex count. This
implies a slight overhead for increased vertex counts. However,
both methods compare favorably to the hyperspectral, as excessive
memory consumption makes this intractable for large scenes.

5 DISCUSSION
In the following, we reflect on prior results and expand on several
aspects of our method.

Reflectance recovery. Our method’s ability to recover the right
metamers depends on the number of secondary constraints (Sec. 4.1).
While recovery for D65 is expectedly without roundtrip error, re-
sults for 𝑐 ≥ 2 and the shapes of recovered spectra are similar
to those of Otsu et al. [2018]. As their approach does not require
secondary constraints, this bears discussion. In short, their method
restricts the PCA basis to a representable set through clustering and
use of𝑚 = 3 basis functions. This leads to recovery of low-banded
reflectances which reproduce the BabelColor Average dataset [Bar-
ber et al. 1996] particularly well, but remains a 1-to-1 mapping. If we
explicity select metamers in Fig. 9, their method incurs significant
mismatching, arbitrarily favoring ourmethod. This is not a failure of
either method, instead demonstrating the necessity of constrained
uplifting. To produce similar results to Otsu et al. [2018] without
secondary constraints, we could apply their clustering approach,
using a different basis set across convex hull vertices.

During hyperspectral texture recovery (Sec. 4.2), our method
recovers the D65 input, but mismatches in a number of texels espe-
cially for FL11. Vertex constraints are fitted on a sampled subset of
the input image.We relax this fitting s.t. the convex hull is preserved.
As the hull specifies a particular convex combination for each sam-
ple, this implies that constraints can at times not perfectly fit on all
samples. The reconstruction is hence imperfect, though error is im-
perceptible for most texels. The sigmoidal [Jakob and Hanika 2019]
provides good reconstruction of Wood and Stone textures, as the

function’s shape matches the reflectances in these textures. How-
ever, this method shows full-image mismatching for vegetation,
where recovered reflectances do not resemble the ground truth.

Basis function restrictions. We employ𝑚 = 12 basis functions
in tests, which exceeds the minimum [Cohen 1964], but enables
metameric control. This flexibility implies that a low number of
constraints admitsmany solutions, making results nondeterministic.
To avoid this behavior, one could vary𝑚 depending on the context.
We leave this as future work, but if we can establish inwhich volume
(Fig. 8) a constraint lies (preferably without solving for volumes),
this enables reflectance recovery using the minimum required basis,
while allowing artists to leverage more bases when necessary.

We further note that, as our basis uses common material data,
reproduction is not guaranteed for all materials. If necessary, our
toolkit supports loading bases that target specific material classes.

Convex hull restrictions. Our method has a notable limitation; im-
age segmentation through a convex hull restricts the set of available
upliftings. Consider an input image with two identical texels. No
constraint can separate these texels into separate metamers, as they
share weights and thus upliftings. If the input were separated into
partial sets of independently uplifted texels, this can be handled.
Alternatively, given an acquired image, one can start with a color
system where texels are different. Then it is possible to produce
metameric matching (e.g., the mug in Fig. 12). This indicates that
the choice of input color system is influential, and can be restrictive.

6 CONCLUSION
Our novel method for spectral uplifting of RGB textures is con-
trollable and allows a user to define material appearance under
different illuminants simultaneously. It generates reflectances from
a small number of metameric mismatching constraints and uplifts
through a simple interpolation. The latter results in a compressed
representation for spectral textures with minimal roundtrip error.

Previous uplifting without control cannot target metameric be-
havior or color constancy. Integrating ourwork into content pipelines
can help with such issues, and we have published our toolkit to
support widespread use.

ACKNOWLEDGMENTS
We thank the Poly-Haven authors for their public domain 3D assets.

REFERENCES
C Bradford Barber, David P Dobkin, and Hannu Huhdanpaa. 1996. The quickhull

algorithm for convex hulls. ACM Transactions on Mathematical Software (TOMS)
22, 4 (1996), 469–483.

Botsch Steinberg Bischoff, M Botsch, S Steinberg, S Bischoff, L Kobbelt, and Rwth
Aachen. 2002. OpenMesh–a generic and efficient polygon mesh data structure. In
In OpenSG Symposium.

Carlos F. Borges. 1991. Trichromatic Approximation for Computer Graphics Illu-
mination Models. SIGGRAPH Comput. Graph. 25, 4 (jul 1991), 101–104. https:
//doi.org/10.1145/127719.122729

Jozef Cohen. 1964. Dependency of the spectral reflectance curves of the Munsell color
chips. Psychonomic science 1, 1 (1964), 369–370.

Omar Cornut. 2022. Dear ImGui. https://github.com/ocornut/imgui
George B. Dantzig. 1982. Reminiscences about the origins of linear programming.

Operations Research Letters 1, 2 (1982), 43–48. https://doi.org/10.1016/0167-6377(82)
90043-8

Peter Deutsch and Jean-Loup Gailly. 1996. Zlib compressed data format specification
version 3.3. Technical Report.

https://doi.org/10.1145/127719.122729
https://doi.org/10.1145/127719.122729
https://github.com/ocornut/imgui
https://doi.org/10.1016/0167-6377(82)90043-8
https://doi.org/10.1016/0167-6377(82)90043-8


SIGGRAPH ’23 Conference Proceedings, August 06–10, 2023, Los Angeles, CA, USA Mark van de Ruit and Elmar Eisemann

Hugh S Fairman and Michael H Brill. 2004. The principal components of reflectances.
Color Research & Application 29, 2 (2004), 104–110.

Graham D. Finlayson and Peter Morovic. 2005. Metamer sets. J. Opt. Soc. Am. A 22, 5
(May 2005), 810–819. https://doi.org/10.1364/JOSAA.22.000810

Michael S Floater. 2003. Mean value coordinates. Computer aided geometric design 20,
1 (2003), 19–27.

John Forrest, Stefan Vigerske, Ted Ralphs, Lou Hafer, John Forrest, jpfasano,
Haroldo Gambini Santos, Matthew Saltzman, Jan-Willem, Bjarni Kristjansson, h-i
gassmann, Alan King, pobonomo, Samuel Brito, and to st. 2022. coin-or/Clp: Release
releases/1.17.7. https://doi.org/10.5281/zenodo.5839302

David H Foster, Kinjiro Amano, Sérgio MC Nascimento, and Michael J Foster. 2006.
Frequency of metamerism in natural scenes. Josa a 23, 10 (2006), 2359–2372.

Hugues Hoppe. 1996. Progressive meshes. In Proceedings of the 23rd annual conference
on Computer graphics and interactive techniques. 99–108.

Wenzel Jakob and Johannes Hanika. 2019. A Low-Dimensional Function Space for Effi-
cient Spectral Upsampling. Computer Graphics Forum (Proceedings of Eurographics)
38, 2 (March 2019).

Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, Merlin Nimier-David, Delio Vicini,
Tizian Zeltner, Baptiste Nicolet, Miguel Crespo, Vincent Leroy, and Ziyi Zhang.
2022. Mitsuba 3 renderer. https://mitsuba-renderer.org.

Tao Ju, Scott Schaefer, and Joe Warren. 2005. Mean value coordinates for closed
triangular meshes. In ACM Siggraph 2005 Papers. 561–566.

A. Jung, A. Wilkie, J. Hanika, W. Jakob, and C. Dachsbacher. 2019. Wide Gamut
Spectral Upsampling with Fluorescence. Computer Graphics Forum 38, 4 (2019),
87–96. https://doi.org/10.1111/cgf.13773

Haris Ahmad Khan, Sofiane Mihoubi, Benjamin Mathon, Jean-Baptiste Thomas, and
Jon Yngve Hardeberg. 2018. HyTexiLa: High Resolution Visible and Near In-
frared Hyperspectral Texture Images. Sensors 18, 7 (2018). https://doi.org/10.
3390/s18072045

Lars König, Alisa Jung, and Carsten Dachsbacher. 2020. Improving Spectral Upsampling
with Fluorescence. InWorkshop on Material Appearance Modeling. The Eurographics
Association. https://doi.org/10.2312/mam.20201139

Steven Le Moan, Sony T George, Marius Pedersen, Jana Blahová, and Jon Yngve
Hardeberg. 2015. A database for spectral image quality. In Image Quality and
System Performance XII, Vol. 9396. SPIE, 225–232.

Changjun Li, M Ronnier Luo, MR Pointer, and Phil Green. 2014. Comparison of real
colour gamuts using a new reflectance database. Color Research & Application 39, 5
(2014), 442–451.

Alexander D. Logvinenko. 2009. An object-color space. Journal of Vision 9, 11 (10
2009), 5–5. https://doi.org/10.1167/9.11.5

Alexander D Logvinenko, Brian Funt, and Christoph Godau. 2013. Metamer mis-
matching. IEEE Transactions on Image Processing 23, 1 (2013), 34–43. https:
//doi.org/10.1109/TIP.2013.2283148

David L. MacAdam. 1935. Maximum Visual Efficiency of Colored Materials. J. Opt.
Soc. Am. 25, 11 (Nov 1935), 361–367. https://doi.org/10.1364/JOSA.25.000361

Michal Mackiewicz, Hans Jakob Rivertz, and Graham Finlayson. 2019. Spherical
sampling methods for the calculation of metamer mismatch volumes. J. Opt. Soc.
Am. A 36, 1 (Jan 2019), 96–104. https://doi.org/10.1364/JOSAA.36.000096

Ian Mallett and Cem Yuksel. 2019. Spectral Primary Decomposition for Rendering
with sRGB Reflectance. The Eurographics Association. https://doi.org/10.2312/sr.
20191216

Laurence T. Maloney. 1986. Evaluation of linear models of surface spectral reflectance
with small numbers of parameters. J. Opt. Soc. Am. A 3, 10 (Oct 1986), 1673–1683.

https://doi.org/10.1364/JOSAA.3.001673
Johannes Meng, Florian Simon, Johannes Hanika, and Carsten Dachsbacher. 2015.

Physically Meaningful Rendering using Tristimulus Colours. Computer Graphics
Forum 34, 4 (2015), 31–40. https://doi.org/10.1111/cgf.12676

H. Otsu, M. Yamamoto, and T. Hachisuka. 2018. Reproducing Spectral Reflectances
From Tristimulus Colours. Computer Graphics Forum 37, 6 (2018), 370–381. https:
//doi.org/10.1111/cgf.13332

Jussi PS Parkkinen, Jarmo Hallikainen, and Timo Jaaskelainen. 1989. Characteristic
spectra of Munsell colors. JOSA A 6, 2 (1989), 318–322.

Christoph Peters, Sebastian Merzbach, Johannes Hanika, and Carsten Dachsbacher.
2019. Using Moments to Represent Bounded Signals for Spectral Rendering. ACM
Trans. Graph. 38, 4, Article 136 (jul 2019), 14 pages. https://doi.org/10.1145/3306346.
3322964

Pedro V Sander, Xianfeng Gu, Steven J Gortler, Hugues Hoppe, and John Snyder.
2000. Silhouette clipping. In Proceedings of the 27th annual conference on Computer
graphics and interactive techniques. 327–334.

Erwin Schrödinger. 1920. Theorie der Pigmente von grösster Leuchtkraft. Annal. Der
Phys. 62 (1920), 603–622.

Brian Smits. 1999. An RGB-to-Spectrum Conversion for Reflectances. Journal of
Graphics Tools 4, 4 (1999), 11–22. https://doi.org/10.1080/10867651.1999.10487511

Jianchao Tan, Jose Echevarria, and Yotam Gingold. 2018. Efficient palette-based
decomposition and recoloring of images via RGBXY-space geometry. ACM
Transactions on Graphics (TOG) 37, 6, Article 262 (Dec. 2018), 10 pages. https:
//doi.org/10.1145/3272127.3275054

Jianchao Tan, Jyh-Ming Lien, and Yotam Gingold. 2016. Decomposing Images into
Layers via RGB-Space Geometry. ACM Trans. Graph. 36, 1, Article 7 (nov 2016),
14 pages. https://doi.org/10.1145/2988229

Di-Yuan Tzeng and Roy S Berns. 2005. A review of principal component analysis and
its applications to color technology. Color Research & Applications 30, 2 (2005),
84–98.

Lucia Tódová, Alexander Wilkie, and Luca Fascione. 2021. Moment-based Constrained
Spectral Uplifting. In Eurographics Symposium on Rendering - DL-only Track, Adrien
Bousseau and Morgan McGuire (Eds.). The Eurographics Association. https:
//doi.org/10.2312/sr.20211304

L. Tódová, A. Wilkie, and L. Fascione. 2022. Wide Gamut Moment-based Constrained
Spectral Uplifting. Computer Graphics Forum 41, 6 (2022), 258–272. https://doi.org/
10.1111/cgf.14617

Andrea Weidlich, Alex Forsythe, Scott Dyer, Thomas Mansencal, Johannes Hanika,
Alexander Wilkie, Luke Emrose, and Anders Langlands. 2021. Spectral Imaging in
Production: Course Notes Siggraph 2021. In ACM SIGGRAPH 2021 Courses (SIG-
GRAPH ’21). Association for Computing Machinery, New York, NY, USA, Article
14, 90 pages. https://doi.org/10.1145/3450508.3464582

Gerhard West and Michael H. Brill. 1983. Conditions under which Schrödinger object
colors are optimal. J. Opt. Soc. Am. 73, 9 (Sep 1983), 1223–1225. https://doi.org/10.
1364/JOSA.73.001223

G. Wyszecki and W. S. Stiles. 1982. Color science: Concepts and Methods, Quantative
Data and Formulae. Wiley.

Fumihito Yasuma, Tomoo Mitsunaga, Daisuke Iso, and Shree K Nayar. 2010. General-
ized assorted pixel camera: postcapture control of resolution, dynamic range, and
spectrum. IEEE transactions on image processing 19, 9 (2010), 2241–2253.

Xiandou Zhang, Brian Funt, and Hamidreza Mirzaei. 2016. Metamer mismatching
in practice versus theory. J. Opt. Soc. Am. A 33, 3 (Mar 2016), A238–A247. https:
//doi.org/10.1364/JOSAA.33.00A238

https://doi.org/10.1364/JOSAA.22.000810
https://doi.org/10.5281/zenodo.5839302
https://doi.org/10.1111/cgf.13773
https://doi.org/10.3390/s18072045
https://doi.org/10.3390/s18072045
https://doi.org/10.2312/mam.20201139
https://doi.org/10.1167/9.11.5
https://doi.org/10.1109/TIP.2013.2283148
https://doi.org/10.1109/TIP.2013.2283148
https://doi.org/10.1364/JOSA.25.000361
https://doi.org/10.1364/JOSAA.36.000096
https://doi.org/10.2312/sr.20191216
https://doi.org/10.2312/sr.20191216
https://doi.org/10.1364/JOSAA.3.001673
https://doi.org/10.1111/cgf.12676
https://doi.org/10.1111/cgf.13332
https://doi.org/10.1111/cgf.13332
https://doi.org/10.1145/3306346.3322964
https://doi.org/10.1145/3306346.3322964
https://doi.org/10.1080/10867651.1999.10487511
https://doi.org/10.1145/3272127.3275054
https://doi.org/10.1145/3272127.3275054
https://doi.org/10.1145/2988229
https://doi.org/10.2312/sr.20211304
https://doi.org/10.2312/sr.20211304
https://doi.org/10.1111/cgf.14617
https://doi.org/10.1111/cgf.14617
https://doi.org/10.1145/3450508.3464582
https://doi.org/10.1364/JOSA.73.001223
https://doi.org/10.1364/JOSA.73.001223
https://doi.org/10.1364/JOSAA.33.00A238
https://doi.org/10.1364/JOSAA.33.00A238


Metameric: Spectral Uplifting via Controllable Color Constraints SIGGRAPH ’23 Conference Proceedings, August 06–10, 2023, Los Angeles, CA, USA

Texture upliftings

Color systems

Vertex constraints Vertex reflectance

Constraint mismatching

Vertex weights

Figure 7: Our toolkit’s user interface. A user can specify color systems (left) and see spectrally uplifted renders (far-left). The
user can modify the convex hull (center), or select its vertices. Per vertex, the user can add and edit color-system constraints
(right) within a metamer mismatch volume (far right). A vertex’ affected texels and constrained reflectances are visualized.
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Figure 8: We generate metamer mismatch volumes (top) for illuminant-induced mismatching (𝐷65 → 𝐹𝐿11) of neutral gray,
using𝑚 basis funtions. We show sampled metamer reflectances for each volume (bottom) with𝑚 > 6. With less flexibility
(𝑚 < 6) the volumes collapsed for this case.
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Figure 10: Artistic uplifting. Using sigmoidals [Jakob and Hanika 2019] (left) produces one reflectance. We can create metamers
for D65, which mismatch for FL11 (center) (we show direct fit and two possible choices). The primary can also be FL11 (right).
False colored textures illustrate difference to Sigmoidal, not error.
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Figure 11: Recovery of hyperspectral images from the HyTexila dataset [Khan et al. 2018]. We display roundtrip and Δ𝐸00 error
for our method and that of Jakob and Hanika [2019] (top), and uplifted reflectances (bottom). We constrain our uplifting for
D65, FL2, FL11, and LED-RGB1.

Figure 12: Example spectral renderings in Mitsuba 3 [Jakob et al. 2022], using spectral materials authored in our toolkit.
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